WORK, POWER, AND ENERGY

Lesson 1-Work

PRACTICE EXERCISES ANSWERS AND SOLUTIONS

1.
$$W = Fd$$

= (20.0 N)(1.50 m)
= 30.0 J

2.
$$W = Fd$$

= $(6.00 \text{ N})(3.00 \text{ m})$
= 18.0 J

3.
$$W = Fd$$

= (2.20 N)(0)
= 0

4.
$$d = \left(\frac{v + v_0}{2}\right)t$$

= $\left(\frac{11.0 \text{ m/s} + 0}{2}\right)(5.00 \text{ s})$
= 27.5 m

$$a = \frac{v - v_0}{t}$$
=\frac{11.0 \text{ m/s} - 0}{5.00 \text{ s}}
= 2.20 \text{ m/s}^2

$$F = ma$$

= (10.0 kg)(2.20 m/s²)
= 22.0 N

$$W = Fd$$

= (22.0 N)(27.5 m)
= 605 J

5. Find horizontal component of the force.

$$F = 75.0 \text{ N}$$

$$10.0^{\circ}$$
horizontal

$$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$$

$$\cos 20.0^{\circ} = \frac{\text{horizontal}}{75.0 \text{ N}}$$

$$\text{horizontal} = (75.0 \text{ N})(\cos 20.0^{\circ})$$

$$= 70.5 \text{ N}$$

$$W = Fd$$

= (70.5 N)(10.0 m)
= 705 J

6.
$$W = F_g d$$

= mgh
= $(60.0 \text{ kg})(9.81 \text{ m/s}^2)(3.2 \text{ m})$
= $1.9 \times 10^3 \text{ J}$

7. Here the force is the gravitational force and no displacement occurs parallel to the force.

Therefore, work done on the box = 0

8.
$$W = mgh$$

= $(80.0 \text{ kg})(9.81 \text{ m/s}^2)(7.0 \text{ m})$
= $5.5 \times 10^3 \text{ J}$

9. Find out work done against friction:

$$W = F_{fr}d$$

= (3.8 N)(6.0 m)
= 22.8 J

Find out work done to accelerate from rest through a distance of 6.0 m:

$$d = v_0 t + \frac{1}{2}at^2$$
6.0 m = $\frac{1}{2}(a)(4.0 \text{ s})^2$

$$a = 0.75 \text{ m/s}^2$$

$$F = ma$$

= (25.0 kg)(0.75 m/s²)
= 18.8 N

$$W = Fd$$

= (18.8 N)(6.0 m)
= 1.13×10² J

Total work done =
$$1.1 \times 10^2$$
 J + 22.8 J
= 1.4×10^2 J